Impatience and myopia through belief functions

Zaier Aouani and Alain Chateauneuf

Qatar University & University of Paris 1
Outline

1 Motivation

2 The finite case

3 Characterization of continuity properties of belief functions
 Outer-continuity
 Outer-continuity and \mathcal{G}-inner-continuity
 σ-continuity

4 Impatience and Myopia in continuous time ($\Omega = \mathbb{R}_+$)

5 Literature
Motivation

$B_\infty(\mathbb{N})$ be the set of bounded real valued functions defined on \mathbb{N}

Interpret $x \in B_\infty(\mathbb{N})$ as a countable income (consumption) stream

Let \succsim be a weak order on $B_\infty(\mathbb{N})$

Rank the x’s through the Choquet integral of x w.r.t. a capacity ν i.e. through $\int x \, d\nu$

$\nu : \mathcal{P}(\mathbb{N}) \to [0, 1]$ s.t. $\nu(\emptyset) = 0, \nu(\mathbb{N}) = 1$, and $A \subseteq B \Rightarrow \nu(A) \leq \nu(B)$.

By definition

$$\int x \, d\nu = \int_{-\infty}^{0} \left(\nu(x \geq t) - 1\right) dt + \int_{0}^{+\infty} \nu(x \geq t) \, dt.$$
Justification for the use of $\int x \, d\nu$:

Comonotonicity

Two income streams x and y are comonotonic if for all $(s, t) \in \mathbb{N}^2$,

$$(x_s - x_t)(y_s - y_t) \geq 0.$$

Comonotonic independence

$x, y, z \in B_\infty(\mathbb{N})$, if z is comonotonic with x and y, and $x \sim y$ then $x + z \sim y + z$.
More precisely

Specifying more precisely \(\nu \) in multi-period decisions:

Sequential comonotonicity

Two income streams \(x \) and \(y \) are sequentially comonotonic (s.c.) if for all \(n \in \mathbb{N} \), \((x_{n+1} - x_n)(y_{n+1} - y_n) \geq 0\).

Axiom of variation aversion

\(x, y, z \in B_\infty(\mathbb{N}) \) if \(\{y, z\} \) are sequentially comonotonic and \(x \sim y \), then \(x + z \succeq y + z \).

Smoothing two successive incomes can be considered as an improvement by the Decision Maker.
Variation aversion implies **convexity** of preferences

\[x \sim y \Rightarrow \alpha x + (1 - \alpha)y \succ y, \quad \forall \alpha \in (0, 1). \]

hence \(\nu \) is convex (monotone of order 2) i.e.

\[\nu(A \cup B) + \nu(A \cap B) \geq \nu(A) + \nu(B) \text{ for all } A, B \in \mathcal{P}(\mathbb{N}). \]

Actually, variation aversion implies monotonicity of infinite order i.e. \(\nu \) is a belief function.
Belief functions

A belief function \(\nu \) on \(\mathcal{P}(\mathbb{N}) \) is a belief function if \(\nu \) is a capacity and if \(\nu \) is \(\infty \)-monotone, i.e., for every \(k \geq 2 \), \(B_1, \ldots, B_k \in \mathcal{B} = \mathcal{P}(\mathbb{N}) \),

\[
\nu\left(\bigcup_{j=1}^{k} B_j\right) \geq \sum_{J, \emptyset \neq J \subseteq \{1, \ldots, k\}} (-1)^{|J|+1} \nu\left(\bigcap_{j \in J} B_j\right)
\]

We now assume \(\nu \) being a belief function.
Motivation

Impatience

\[\succsim \text{ is impatient if} \]

\[\forall x \in B_\infty(\mathbb{N}), \forall \epsilon > 0, \exists N_o(x, \epsilon) \in \mathbb{N}, \left[n \geq N_o \Rightarrow (x + \epsilon)1_{[0,n]} \succ x \right]. \]

Proposition [Chateauneuf and Rébillé (2004)]

(i) \(\succsim \) is impatient

\(\iff \)

(ii) \(\nu \) is continuous at \(\mathbb{N} \) i.e. \(B_n \uparrow \mathbb{N} \Rightarrow \nu(B_n) \uparrow 1 \)

\(\iff \)

(iii) [Rosenmüller (1972)] \(\nu \) is continuous i.e. \(\forall B_n, B \in \mathcal{B}, B_n \uparrow B \Rightarrow \nu(B_n) \uparrow \nu(B), \text{ and } B_n \downarrow B \Rightarrow \nu(B_n) \downarrow \nu(B) \)
Motivation

Myopia

Myopia

\(\succcurlyeq \) is myopic if

\[\forall x, y \in B_\infty(\mathbb{N}) \text{ s.t. } x \succ y, \forall \epsilon > 0, \exists N_o \in \mathbb{N}, \left[n \geq N_o \Rightarrow x \succ y + \epsilon \mathbf{1}_{[n,+\infty)} \right]. \]

Proposition [Chateauneuf and Ventura (2010)]

(i) \(\succcurlyeq \) is myopic

\(\iff \)

(ii) \(\nu \) is outer-continuous i.e. \(\forall B_n, B \in \mathcal{B}, B_n \downarrow B \Rightarrow \nu(B_n) \downarrow \nu(B) \)
1. How to build continuous or outer-continuous belief functions on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

2. More generally, how to build belief functions on polish spaces $(\Omega, \mathcal{B}(\Omega))$ with specific continuity properties.

3. How are impatience and myopia translated in continuous time i.e. if \mathbb{N} is replaced by $\Omega = [0, +\infty)$ and $\mathcal{B}_\infty(\mathbb{N})$ replaced by L^∞ the space of bounded real-valued measurable functions on (Ω, \mathcal{B}).
Let Ω be finite, $\mathcal{B} = 2^\Omega$, and $\mathcal{B}' = \mathcal{B}\setminus\{\emptyset\} = 2^\Omega\setminus\{\emptyset\}$.

For $A \in \mathcal{B}'$, the **unanimity game** $u_A : \mathcal{B} \to [0, 1]$ is defined by

$$u_A(B) = \begin{cases} 1 & \text{if } A \subset B, \\ 0 & \text{otherwise}. \end{cases}$$

Any unanimity game is a belief function.

Unanimity games are the extremal elements of the compact convex set of belief functions on $(\Omega, 2^\Omega)$.
The finite case

Proposition 1

\(\nu \) is a belief function on \((\Omega, 2^\Omega)\) if and only if there exists a probability measure \(\mu_\nu \) on \((\mathcal{B}', 2^{\mathcal{B}'})\) such that

\[
\nu = \sum_{A \in \mathcal{B}'} \mu_\nu(A) u_A
\]

Furthermore \(\mu_\nu \) is unique and called the Möbius inverse of \(\nu \).

Apply Krein-Milman Theorem
[Choquet (1954)]’s theorem

Let K be a nonempty compact convex subset of a locally convex and Hausdorff topological vector space E.

Denote by $A(K)$ the space of affine continuous functions on K.

A function $f : K \rightarrow \mathbb{R}$ is said to be affine if

$$f(tx + (1-t)y) = tf(x) + (1-t)f(y) \quad \forall x, y \in K, 0 \leq t \leq 1.$$

A point $x \in K$ is called extreme point of K if from $y, z \in K$ and $ty + (1-t)z = x$ with $0 < t < 1$ we get $x = y = z$.

Denote $\text{ext}K$ the set of extreme points of K.
The finite case

Choquet’s theorem (1954)

Theorem 1

For every \(x \in K \), there exists a probability measure (\(\sigma \)-additive) \(\mu_x \) on \(\text{ext} K \) (w.r.t. the smallest \(\sigma \)-algebra making all elements of \(A(K)|_{\text{ext} K} \) measurable) such that for all \(f \in A(K) \):

\[
f(x) = \int_{\text{ext} K} f|_{\text{ext} K} \, d\mu_x.
\]
Characterization of continuity properties of belief functions ν defined on a Polish space Ω, through specific related σ-additive Möbius transform μ_{ν}:

Let \mathcal{V} be the set of all games defined on \mathcal{B} i.e.

$$\mathcal{V} = \{\nu : \mathcal{B} \rightarrow \mathbb{R}, \nu(\emptyset) = 0\}.$$

Let E be a linear subspace of \mathcal{V}. Endow E with the topology τ of simple convergence, as in [Marinacci (1996)].

(E, τ) is a locally convex and Hausdorff topological space.

The set $K = \text{Bel}_E$ of belief functions in E is τ-compact and convex.
For every $B \in \mathcal{B}$ the mapping

$$f : \nu \in K \mapsto f(\nu) = \nu(B)$$

is affine and continuous, hence $f \in A(K)$.

So, as soon as belief functions with given continuity properties are considered and the related space of games is a linear subspace of \mathcal{V}, then one can apply Choquet’s theorem, once extremal elements of $K = Bel_E$ are characterized.
When the set Ω is finite, Choquet's theorem gives:

For every belief function ν, there exists a probability measure μ_{ν} on $(\mathcal{B}', 2^{\mathcal{B}'})$ such that, for every $B \in \mathcal{B}$:

$$\nu(B) = \int_{\text{ext Bel}_E} u(B) d\mu_{\nu}(u) = \sum_{A \in \mathcal{B}'} u_A(B) \mu_{\nu}(A)$$

Or else $\nu(B) = \mu_{\nu}(\tilde{B})$ where $\tilde{B} = \{ A \in \mathcal{B}' : A \subset B \}$

or equally $\nu(B) = \sum_{A \subseteq B} \mu_{\nu}(A)$ (writing $\mu_{\nu}(A)$ instead of $\mu_{\nu}([A])$).
A useful known result (Choquet (1954))

The extreme points of the set of belief functions defined on a measurable space (Ω, \mathcal{B}) are the filter games

A nonempty set p of elements of \mathcal{B} is called a filter if

1. $\forall A, B \in \mathcal{B}, [A \in p, A \subset B \Rightarrow B \in p]$,
2. $\forall A, B \in \mathcal{B}, [A, B \in p \Rightarrow A \cap B \in p]$.

The filter p is called proper if $\emptyset \notin p$.

A game $\nu : \mathcal{B} \rightarrow \{0, 1\}$ is called a filter game if the set $p := \{ B \in \mathcal{B} : \nu(B) = 1 \}$ is a filter. In this case ν is denoted u_p where u_p is obviously defined by $u_p(B) = 1$ if $B \in p$, and $u_p(B) = 0$ otherwise.
Outline

1 Motivation

2 The finite case

3 Characterization of continuity properties of belief functions
 Outer-continuity
 Outer-continuity and \mathcal{G}-inner-continuity
 σ-continuity

4 Impatience and Myopia in continuous time ($\Omega = \mathbb{R}_+$)

5 Literature
A belief function ν is outer-continuous at $B \in \mathcal{B}$ if

$$B_n \in \mathcal{B}, B_n \downarrow B \implies \nu(B_n) \downarrow \nu(B)$$

A game $\nu \in \mathcal{V}$ is outer-continuous if it is outer-continuous at every $B \in \mathcal{B}$ i.e. if $\forall B \in \mathcal{B}, B_n \in \mathcal{B}, B_n \downarrow B$ implies $\nu(B_n) \xrightarrow[n \to \infty]{} \nu(B)$
Outer-continuous belief functions

E_o denotes the linear space of bounded, outer-continuous games

Bel_{E_o} denotes the compact convex set of outer-continuous belief functions

$\text{ext } Bel_{E_o}$ is the set of extreme elements of Bel_{E_o}.

Proposition 2

$\text{ext } Bel_{E_o} = \{u_p : p \text{ is a proper filter closed under countable intersection}\}$.
Denote by Σ_o the σ-algebra on $\text{ext } \text{Bel}_{E_0}$ generated by the family $\{ \tilde{B} : B \in \mathcal{B}, B \neq \emptyset \}$, where

$$\tilde{B} = \{ u_p \in \text{ext } \text{Bel}_{E_0} : B \in p \}.$$

Theorem 2

For every $\nu \in \text{Bel}_{E_0}$ there exists a σ-additive measure μ_ν on Σ_o such that for all $B \in \mathcal{B}$,

$$\nu(B) = \int_{\text{ext } \text{Bel}_{E_0}} u(B) \, d\mu_\nu(u) = \mu_\nu(\tilde{B}). \quad (1)$$

Conversely, given a σ-additive measure μ_ν on Σ_o, the expression above defines an outer-continuous belief function on \mathcal{B}.

Aouani & Chateauneuf (QU & U Paris 1) Impatience and myopia through belief functi
The particular case of \(\Omega \) countable (i.e. Myopia when \(\Omega = \mathbb{N} \)):

Lemma 1

Every proper filter \(p \) on \(\mathbb{N} (p \neq 2^\mathbb{N}) \) closed under countable intersection is principal, that is, there exists a nonempty subset \(T \) of \(\mathbb{N} \) such that \(p = \{ B \subseteq \mathbb{N} : T \subseteq B \} \).
Countable state space

Since a countable set endowed with the discrete topology is a polish space, we obtain as a corollary:

Corollary 1

(Theorem D. [Gilboa and Schmeidler (1995)])

If Ω is countable, for every $\nu \in \text{Bel}_{E_o}$ there exists a σ-additive measure μ_ν on the σ-algebra generated by the sets $\tilde{B} := \{ T \in 2^\Omega : \emptyset \neq T \subseteq B \}$ for $B \subset \Omega$, $B \neq \emptyset$, such that

$$\nu(B) = \mu_\nu(\tilde{B}) \quad \text{for all} \quad B \in 2^\Omega.$$

Conversely, given a σ-additive measure μ_ν on the σ-algebra generated by the sets \tilde{B}, the expression above defines an outer-continuous belief function on 2^Ω.
The following corollary provides a simple way to build an outer-continuous belief function on 2^Ω when Ω is countable.

Corollary 2

Let C be a countable subset of $2^\mathbb{N} \setminus \{\emptyset\}$ and let $m : 2^\mathbb{N} \rightarrow [0, 1]$ be such that

$$\sum_{\{T : T \in C\}} m(T) = 1 \text{ and } m|_{C^c} = 0.$$

Define a game ν by:

$$\nu(B) = \sum_{\{T : T \in C, T \subset B\}} m(T) \text{ for all } B \in 2^\mathbb{N}.$$

Then ν is an outer-continuous belief function on $2^\mathbb{N}$.
Outline

1. Motivation

2. The finite case

3. Characterization of continuity properties of belief functions
 - Outer-continuity
 - Outer-continuity and \mathcal{G}-inner-continuity
 - σ-continuity

4. Impatience and Myopia in continuous time ($\Omega = \mathbb{R}_+$)

5. Literature
A belief function ν is G-inner-continuous at $G \in \mathcal{G} := \{\text{open sets}\}$ if

$$G_n \in \mathcal{G}, \; G_n \uparrow G \Rightarrow \nu(G_n) \uparrow \nu(G)$$

A game $\nu \in \mathcal{V}$ is G-inner-continuous if it is G-inner-continuous at every $G \in \mathcal{G}$ i.e. if $\forall G \in \mathcal{G}, \; G_n \in \mathcal{G}, \; G_n \uparrow G$ implies $\nu(G_n) \xrightarrow{n \to \infty} \nu(G)$
$E_{o,G}$ denotes the linear space of bounded, outer-continuous and G-inner-continuous games.

$Bel_{E_{o,G}}$ denotes the compact convex set of outer-continuous and G-inner-continuous belief functions.

$\text{ext } Bel_{E_{o,G}}$ is the set of extreme elements of $Bel_{E_{o,G}}$.

$\mathcal{K} = \{\text{compact subsets } K \text{ of } \Omega\}$

Proposition 3

$$\text{ext } Bel_{E_{o,G}} = \{ u_K : K \neq \emptyset, K \in \mathcal{K} \}.$$
The proof of Proposition 3 relies on the following capacitability theorem.

Capacitability theorem [Choquet (1954)], [Debs et al (1999)]

Let ν be a convex cocapacity on a polish space (Ω, \mathcal{B}) i.e. ν is \mathcal{G}-inner-continuous and outer-continuous then

$$\nu(B) = \sup_{K \in \mathcal{K}, K \subseteq B} \nu(K) = \inf_{G \in \mathcal{G}, G \supseteq B} \nu(G) \quad \forall B \in \mathcal{B}.$$
Denote by $\Sigma_{o,G}$ the σ-algebra on $\text{ext}\, Bel_{E_0,G}$ generated by the family
\{ $\tilde{B} : B \in \mathcal{B}, B \neq \emptyset$\}, where
$$\tilde{B} = \{ u_K : K \in \mathcal{K}, \emptyset \neq K \subseteq B \}.$$

Theorem 3

For every $\nu \in Bel_{E_0,G}$ there exists a σ-additive measure μ_{ν} on $\Sigma_{o,G}$ such that for all $B \in \mathcal{B}$,

$$\nu(B) = \int_{\text{ext}\, Bel_{E_0,G}} u(B) \, d\mu_{\nu}(u) = \mu_{\nu}\left(\{ u_K : K \in \mathcal{K}, \emptyset \neq K \subseteq B \} \right). \quad (2)$$

Conversely, given a σ-additive measure μ_{ν} on $\Sigma_{o,G}$, the expression above defines an outer-continuous and \mathcal{G}-inner-continuous belief function on \mathcal{B}.
Indeed, Theorem 3 would allow to build simple outer-continuous and G-inner-continuous belief functions by selecting a countable set of compacts and proceeding in the same way as in Corollary 2.
Outline

1. Motivation

2. The finite case

3. Characterization of continuity properties of belief functions
 - Outer-continuity
 - Outer-continuity and G-inner-continuity
 - σ-continuity

4. Impatience and Myopia in continuous time ($\Omega = \mathbb{R}_+$)

5. Literature
Characterization of continuity properties of belief functions

(σ-continuity)

(i.e. Impatience when \(\Omega = \mathbb{N} \))

(i.e. Impatience when \(\Omega = \mathbb{N} \))

Reminder

A convex capacity \(\nu \) (hence a belief function) is \(\sigma \)-continuous if and only if \(\nu \) is continuous at \(\Omega \) i.e. \(B_n, B \in \mathcal{B}, B_n \uparrow \Omega \) implies \(\nu(B_n) \uparrow 1 \).

\(E_\sigma \) denotes the linear space of \(\sigma \)-continuous games i.e. of games \(\nu \) such that \(B_n \uparrow \Omega \Rightarrow \nu(B_n) \xrightarrow{n \to \infty} 1. \)

\(\text{Bel}_{E_\sigma} \) denotes the compact convex set of \(\sigma \)-continuous belief functions on \((\Omega, \mathcal{B}) \)

\(\text{ext Bel}_{E_\sigma} \) is the set of extreme elements of \(\text{Bel}_{E_\sigma} \).

\(\mathcal{K}_0 = \{ \text{finite subsets } K \text{ of } \Omega \} \)
Proposition 4

\[\text{ext } Bel_{E_\sigma} = \{ u_K : K \neq \emptyset, K \in \mathcal{K}_0 \} \].

Since for a belief function, \(\sigma \)-continuity implies outer-continuity and \(\mathcal{G} \)-inner-continuity, Proposition 4 relies on Proposition 3 where it is proved that

\[\text{ext } Bel_{E_{o, \mathcal{G}}} = \{ u_K : K \neq \emptyset, K \in \mathcal{K} \} \].
Theorem 4

For every \(\nu \in \text{Bel}_{E_\sigma} \) there exists a \(\sigma \)-additive measure \(\mu_\nu \) on \(\Sigma_\sigma \) such that for all \(B \in \mathcal{B} \),

\[
\nu(B) = \int_{\text{ext Bel}_{E_\sigma}} u(B) \, d\mu_\nu(u) = \mu_\nu\left(\{u_K : K \in \mathcal{K}_0, \emptyset \neq K \subseteq B\}\right). \tag{3}
\]

Conversely, given a \(\sigma \)-additive measure \(\mu_\nu \) on \(\Sigma_\sigma \), the expression above defines an inner-continuous belief function on \(\mathcal{B} \).

Corollary 3

For every \(\nu \in \text{Bel}_{E_\sigma} \) and for every bounded measurable function \(f \) on \(\Omega \), we have

\[
\int f \, d\nu = \int_{\{u_K : K \neq \emptyset, K \in \mathcal{K}_0\}} \left[\min_K f\right] \, d\mu_\nu.
\]
Corollary 4

[Chateauneuf and Rébillé (2004)]

A game ν on $2^\mathbb{N}$ is an inner-continuous belief function if and only if there exists a unique game\(^a\) $m : 2^\mathbb{N} \rightarrow [0, 1]$ with $\sum_{K \in \mathcal{K}_0} m(K) = 1$ and $m|_{\mathcal{K}_0^c} = 0$ such that

$$\nu(B) = \sum_{\{K : K \in \mathcal{K}_0, K \subset B\}} m(K) \quad \forall B \in 2^\mathbb{N}. \quad (4)$$

Furthermore,

$$m(B) = \sum_{\{K : K \in \mathcal{K}_0, K \subset B\}} (-1)^{|B \setminus K|} \nu(K) \quad \forall B \in \mathcal{K}_0. \quad (5)$$

\(^a\)In particular $m(\emptyset) = 0$.
Impatience and Myopia

$L^\infty(\Omega)$ the space of bounded real-valued measurable functions on (Ω, \mathcal{B}) with \mathcal{B} the borelians of Ω

Interpret $x \in L^\infty(\Omega)$ as a continuous income stream

\(\succeq\) a weak order on $L^\infty(\Omega)$ representable by the Choquet integral w.r.t. a belief function ν on Ω
Impatience and Myopia in continuous time ($\Omega = \mathbb{R}_+$)

Impatience and Myopia

Myopia in continuous time

\succsim is myopic if for every $(B_n)_n \subset \mathcal{B}$ such that $B_n \downarrow \emptyset$, for every x, y in L^∞, and c in \mathbb{R}: $x \succ y$ implies $x \succ y + c \mathbf{1}_{B_n}$ for sufficiently large n.

Theorem 5

\succsim is myopic if and only if ν is outer-continuous.
Impatience in continuous time

\(\succcurlyeq \) is impatient if

\[\forall x \in L_\infty, \forall \epsilon > 0, \exists T_0(x, \epsilon) \in \mathbb{R}_+, \left[T \geq T_0 \Rightarrow (x + \epsilon)1_{[0,T]} \succ x \right]. \]

Theorem 6

\(\nu \) is \(\mathcal{G} \)-inner-continuous \(\Rightarrow \) \(\succcurlyeq \) is impatient.
Strong Impatience

Notation: Let \((I_n)_{n \in \mathbb{N}}\) be disjoint open intervals of \(\mathbb{R}_+\) where \(I_1 = [0, b_1)\), \(I_2 = (a_2, +\infty)\), \(I_n = (a_n, b_n)\) otherwise.

Denote by \(J_n = [c_n, d_n]\) closed intervals strictly included in \(I_n\) namely \(a_n < c_n < d_n < b_n\) for all \(n \in \mathbb{N}\).

Theorem 7

\(\succsim\) is strongly impatient if and only if \(\nu\) is \(G\)-inner-continuous.
A. Chateauneuf and Y. Rébillé
A Yosida-Hewitt decomposition for totally monotone games
Mathematical Social Sciences, 48:1–9, 2004

G. Choquet
Theory of Capacities

A. De Waegenaere and P. Wakker
Nonmonotonic Choquet integrals
Journal of Mathematical Economics, 36:45–60, 2001
G. Debs, J.-Y. Jaffrey, and F. Philippe
Decision making with monotone lower probabilities of infinite order

I. Gilboa
Expectation and Variation in Multi-Period Decisions
Econometrica, 57:1153–1169, 1989

I. Gilboa and D. Schmeidler
Canonical representation of set functions
P. Huber and V. Strassen
Minimax tests and the Neyman-Pearson lemma for capacities

M. Marinacci
Decomposition and representation of coalitional games

J. Rosenmüller
Some properties of convex set functions